ELECTRIC FIELD FROM A POINT SOURCE IN THE ZONE
OF A WELL WITH CONSIDERATION OF THE STRAINED
STATE OF THE BED

V. I. Tarakanov UDC 550.839; 071.1

We will investigate an electric field from a point source in an unbounded space having a cylindrical
channel with consideration of inhomogeneous strain of the medium. An analogous problem but without con-
sideration of the strained state of the medium was investigated in [1, 2] with reference to problems of elec-
trical prospecting of wells. The need to take into account the strained state of the medium is related with
the fact that experimental studies {3-5] indicate a considerable dependence of the electrical conductivity
of a number of materials of practical interest on their strained state.

1. Since the strained state of a material is determined by the strain tensor €ij» the electrical con-
ductivity of the material should be some function of this tensor. This dependence should be invariant rel-
ative to the choice of the coordinate system, i.e., the conductivity should also be some tensor kjj and be
associated by a functional relation with the strain tensor &ij.

The most general form of such a functional tensor relation is [6]
ki = F (A1, Ay, 4) 83 -+ ® (A, 4y, Aa) esi + W Ay, Ag, Ag) e 1.1)

where F, &, W are arbitrary functions; A, A,, A, are invariants of tensor €;;; 0;; is a unit tensor. Con-
sidering the strains €jj to be small, we can linearize functional relation (1.1). After expanding (1.1) in ser-
ies and limiting ourselves to term of the first order of smallness, we obtain

kij = (o0 + 06) 855 -+ vesj (1.2)

where a, 6, y are constant moduli; 6 =€y +&yy +£43 is the first invariant of tensor &jj; o is the electrical
conductivity in a state taken to be unstrained.

The coefficients 6, y characterize the effect of the strain of the material on its conductivity. The co-
efficients 0, v must be found experimentally, whereby two experiments on measuring the conductivity in
uniform and uniaxial compression are sufficient for finding them. '

Thus, on the basis of (1.2) the current density i in the strained medium is
i= k;iVu (1.3)
where u in the electric field potential.
The equation of a constant electric field in a deformable medium on the basis of (1.2) and (1.3) will be
VkyVu =0 (1.4)

2. With consideration of the dependence of the conductivity of the material on the strained state es-
tablished above the problem has the following statement: it is required to find the electric field from a de
point source I in an unbounded space with a cylindrical channel of radius rg, the source being located on
the channel axis. The electrical conductivity of the medium depends on its strained state which arises due
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’ £/ Roo to the pressure of uniform compression at infinity p, and pressure in the
' 1 channel p;. The channel is filled with fluid with electrical conductivity o.
7 This statement of the problem is possible if an electric probe is in a well
\ J , filled with drilling fluid, whereby the thickness of the bed is much greater
2 N | than the well radius and much less than the depth of occurrence of the bed.
5\ In this case the bed can be regarded as unbounded and under the effect of
\ —— pressure p, at infinity equal to the rock pressure of the overlying soillay-
ers. Pressure p; corresponds to the pressure of the drilling fluid in the

%% T8 region of the bed.

1 2 3 7 The problem is solved on the assumption that the material of the
Fig. 1 medium is linearly elastic and the stress tensor ojj is associated with the
strain tensor &;j by the relation

;5 = M88;; 1 2pe;; (2.1)

Here A, p are the Lamé constants. The boundary conditions of the elastic problem have the following
form in cylindrical coordinates:

Sz =0, Srp=—p1 r=rq
Srz=0,. Spp = — Dz (r — ) (2 2)
Sz =0, Gzz =—p2 (z— % o) )

By virtue of axial symmetry and the boundary conditions there will exist in the medium three non-
trivial components of the stress tensor oyy, 0zz, O and three nontrivial components of the strain tensor
Err, €g25 Egyr The components of the displacement vector in radial and axial directions uy, uz satisfying
the equations of the axisymmetric elasticity theory and boundary conditions (2.2) have the form

p2 p—piré P2
Wr=—mFm T o 7' =3’ (2.3)

The components of the strain tensor corresponding to the displacement vector (2.3) will be

pz — p1 ro

err--"3,;\'_|_2p,+ )

P2 p2—p1 ro®
Coo="EAF2m T 2m (2.4)

P2
EZZ='—'——3L+ 2(", erz=8r¢=82¢=0

3. On the basis of (1.2}, (2.4) the conductivity tensor for region r>r, is writlen

—pLr
. (3(5+')’)3}‘+2p+'fp2 P :ﬁ
. pz——pl ro?
kw=q—(36+'r)m T (3.1)
kz,=a_.(3a+y)3—,v_%;. by, = kg =y =0

The equation for the distribution of the electric potential u, in region r>ry on the basis of (3.1}, (1.4)
after introducing the dimensionless parameters p =r/ry, ¢ =z/1, will take the form

b Uy b
(1—}3?)"2.»"‘ 2pp (1+‘§2')+”z,zz=0 (3.2)
Here b is a dimensionless parameter
b Y (3h + 20) p—p .
=T TCA 2 —~@ FV P 2B (3.3)

In the absence of a pressure drop p,—p;, b=0 and the Laplace equation is obtained for the distribution
of the electric field. On finding the particular solutions of Eq. (3.2) by the method of separation of vari-
ables the following expression is obtained:

u=[C1l(y V 92— b) 4 C2Ko (7 V p® — b}] cos 1E. (3.4)

Here I,, K, are Bessel functions of an imaginary argument of the first and second kind; Cy, C, are
constants of integration. In the region r<r, filled with fluid with conductivity o the potential u, satisfies
the equation
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u1Y , _
Uy, op T pp g =0 (3.5)

It is required to find the electric potential satisfying Eq. (3.5) in region r<ry and Eq. (3.2) in region
r >r,, whereby at the boundary p =1 the coupling conditions, which consist in equality of the potentials uy,
u, and equality of the normal components of the current through the cylindrical surface p =1, should be ful-
filled:

P2 Pr—p
o= [e—@ 41 g v (3.6)

The point source I is located at point p =0, ¢ =0, and therefore the potential u; should have at this point
& singularity corresponding to the singularity of the point source, which is located in an unbounded homoge-~
neous space with conductivity ¢, i.e., at point p =0, £ =0 the potential u; should have the singularity [1, 7]

I . 1
U e VR B [1 +0 (Vm)] 3.7
The potential should approach zero with distance from the source:
u1->0, 5 ——-)j:oc; uz—»(), VEZ_“I"—E__‘Z.""OO (3.8)

4, The general solutions of Egs. (3.2) and (3.5) with consideration of the boundary conditions and
coupling conditions are selected in the form

U= 5' C (1) Ko (p) cos Y& dy -+ 5‘ A (1) Lo (p) cos TE dy (4.1)
1] [}
up = f B(1)Ke(x VoF—b)cos 1E dy (4.2)
0

With the use of the known integral relation [8]

)

1 1
Ko (1p) cos Y§ dy = —~
§ - 2yVete

we can fulfill the condition at the singular point p =0, ¢ =0, having set

I
CO)="oirs (4.3)

To determine coefficients A(y), B(y) it is sufficient to use the coupling conditions at the boundaryp =1,
which, if we introduce notation, are written

_ s (3h 4- 2u)
B=Vi=b s=gmim—GsTnm “
Cro I
S [m Ko(v)+ AM Io (1) ~ B (1) Ko (TB)] oos TR dy =0 “
0
§ [54 0131 — g K1 (04 BB (1) K (1) cos vy =0 (4.6)
0

Equating the integrands of (4.5), (4.6) to zero, we obtain the following expressions for the functions:

I sKi(1) Ko (vB) —BKo () K1 (¥B)
A =Zirss Bl (v) Ki (1) o1 (1) Ko (1B) (4.7)

sI 1
B () =3B TTBLe (0 K1 (B 511 (1) Ko (B (4.8)

Thus the distribution of the potentials uy, u, is given by the formulas

oo

P € sK1(v) Ko (1B) — BKo (v) K1 (1) (4.9)
U= Fege {S Ko (yp) cos 1§ dy + S B0 (1) K1 (1B) - s11 (1) Ko (YB) To(tp) cos 1§ dT}‘
0 0

sl go Koly Vp®—b) cos TE d

s = Gl ) 7RI () K () + o1 (7) Ko G (4.10)
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We see from (4.9), (4.10) that the distribution of the potential to within the factor depends on two di-~
mensionless parameters s, B, whereby when 8 =1 a pressure drop p,—p; is absent and the solution known
from the literature [1] is obtained.

The integrals of (4.9), (4.10) are convergent, since the integrands have a logarithmic singularity and
do not have poles, Actually, if at some point v, the integrand had a pole, the relation

2 La(r) Ki(rop) |
B =" it Ko (1B (4.11)

would be fulfilled.
But for any vy
L >0 Iiiyy>0 K >0 Kp>0
By definition s> 0, $>0, and (4,11) cannot be fulfilled.

If a point source of power I were in a homogeneous medium with electrical resistance R,

BA—I;Zp.

Be=amram =T 1m (4.12)

its potential uy would be given by the formula
Mo 13)
us=4m-o Vm (4. 3

The ratio of the measured potential uy to the potential uy at this point is in the terminology of [1] the
relative apparent resistance

w B2 ([ ¢ 5k (1) Ko (1B) — BKo (1) K1 (vB)
= R—m-_——ﬂ—{lf P {S Ko (xp) cos (E dY +S oo (1) e aBFs IIO(T) Kul(*(ﬁ) To(1p) cos 1% dx} (4.14)
0 0

The value of the ratio R/R,, on the channel axis p =0 was calculated for various values of parameters
s, B and for different . Figure 1 shows the curves of the relative apparent resistance R/R,, for values
of s, 8 equal to 0.1-1.3, 0.1~1.0, 0.1-0.7, 1-1.3, 1-1, 1-0.7, 5-0.7, 5-1, 5-1.3 (curves 1-9 respectively).

We see from the figure that for large distances from the source the apparent resistance measured
along the well axis approaches the resistance of the medium at infinity regardless of the values of s, 8.

For small distances from the source the apparent resistance approaches the resistance of the me-
dium in the region r<r;. For intermediate distances the apparent resistance is affected by the difference
in the resistances of the two zones and by the inhomogeneity of the strained state of the zone when r>r,.
The strained state of the zone r>r, affects the distribution of the potential owing to a change of resistance
at infinity from uniform compression according to Eq. (4.12) and owing to distortion of the configuration
of the curves of the apparent resistance by virtue of the inhomogeneity of the strained state characterized
by deviation of the parameter 8 from unity.
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